JIANGCE CHEN

(+1) 860-569-9841 \diamond jiangcechen@gmail.com

EDUCATION

Carnegie Mellon University, PA, USA. Postdoctoral Fellowship

University of Connecticut, CT, USA Ph.D. in Mechanical Engineering M.S in Computer Science and Engineering

Beihang University, Beijing, China B.E, Aircraft Design and Engineering. B.S, Applied Mathematics.

HONORS & FELLOWSHIPS

Postdoctoral Fellowships of Manufacturing Future Institute, CMU	January 2023
Second Place in Graduate Research Competition, UConn ME Department	May 2020
CT IN4SPIRE Project	April 2019
Honorable Mention, Mathematical Contest In Modeling	2013, 2014
2nd Prize in the 23th Fengru Idea competition	2013
Zhang Zixiong Fluid Mechanics Scholarship	2013

PATENTS

All patent applications are in processing, except when mentioned otherwise.

Method and System to Automatically Generate Self-Supporting Net-Part-Boundary, or Intra-Part, Modifications for Hybrid. **Jiangce Chen**, Morad Behandish, Matt Patterson

Method of Electrowetting for Drop-on-demand Metal Additive Manufacturing. **Jiangce Chen**, Horea T. Ilies (US-20230391079-A1)

PAPERS AND CONFERENCES

Journal Articles

Chen, J., Khrenov, M., Jin, J., Narra, S.P., McComb, C., (2024) Data-Driven Inpainting for Full-Part Temperature Monitoring in Additive Manufacturing. *Journal of Manufacturing Systems*

Chen, J., Xu, W., Baldwin, M., Nijhuis, B., Boogaard, T.V.D., Gutiérrez, N.G., Narra, S.P. and McComb, C. (2024) Capturing Local Temperature Evolution during Additive Manufacturing through Fourier Neural Operators. *Journal of Manufacturing Science and Engineering*

Chen, J., Pierce, J., Williams, G., Simpson, T.W., Meisel, N., Prabha Narra, S. and McComb, C. (2024). Accelerating Thermal Simulations in Additive Manufacturing by Training Physics-Informed Neural Networks With Randomly Synthesized Data. *Journal of Computing and Information Science in Engineering*, pp.1-14.

Chen, J., Baldwin, M., Narra, S.P. and McComb, C. (2024) Multi-lattice Topology Optimization via Generative Lattice Modeling. *Journal of Mechanical Design* (In press)

Behzadi, M, Ilies, H, Zaffetti, P., **Chen**, J., Zeidner, L. (2024) Spatial Packaging and Routing Optimization of Complex Interacting Engineered Systems. *Journal of Mechanical Design* (In press)

Jan 2023- Present

May 2023 December 2021

July 2014

Behzadi, M. M., Chen, J., & Ilies, H. T. (2023). Taming Connectedness in Machine-Learning-Based Topology Optimization with Connectivity Graphs. Computer-Aided Design, 103634.

Chen, J., Ilies, H. T., and Ding, C. (2022). Graph-Based Shape Analysis for Heterogeneous Geometric Datasets: Similarity, Retrieval and Substructure Matching. *Computer-Aided Design*, 143, 103125.

Chen, J., and Ilieş, H. T. (2020). Maximal disjoint ball decompositions for shape modeling and analysis. *Computer-Aided Design*, 126, 102850.

Zhao, Y. P., **Chen, J.**, Yuan, Q., and Cheng, C. (2016). Microcrack connectivity in rocks: a real-space renormalization group approach for 3D anisotropic bond percolation. *Journal of Statistical Mechanics: Theory and Experiment*, 2016(1), 013205.

Conferences

Chen, J., Baldwin, Narra, S.P. and McComb, C. (2024) Multi-lattice topology optimization with lattice representation learned by generative models, *IDETC/CIE* 2024

Chen, J., Xu, W., Baldwin, M., Nijhuis, B., Boogaard, T.V.D., Gutiérrez, N.G., Narra, S.P. and McComb, C. (2023) Capturing Local Temperature Evolution during Additive Manufacturing through Fourier Neural Operators, *IDETC/CIE* 2023

Chen, J., Khrenov, M., Jin, J., Narra, S.P. and McComb, C. (2023) Toward Post-Superficial Temperature Monitoring During Additive Manufacturing through Data-Driven Inpainting, *Solid Freeform Fabrication Symposium* 2023

Chen, J., Patterson, M, Mirzendehdel A. M., Behandish, M. (2022) Automatic Shape Modification for Self-Supporting Structures in Additive Manufacturing, *IDETC/CIE* 2022

Chen, J., Ilies, H. T. (2020) Maximal Disjoint Ball Decompositions for Shape Modeling and Analysis, *The Symposium on Solid and Physical Modeling (SPM).*

Chen, J., Ilies, H. T. (2018) Mathematical Abstractions for Engineering Design and Manufacturing. *SIAM/GD 19 PROGRAM.*

Articles under review

Chen, J., Xu, W., Xu, Z., Gutiérrez, N.G., Narra, S.P. and McComb, C. (2024) Enforcing Strict Local-dependency for Neural Operators with Data Decomposition. *Journal of Computational Physics*

TEACHING EXPERIENCE

Teaching Assistant, ME department, University of Connecticut

- Design of Machine Elements ME3227 (Fall 2017)
- Analysis and Design of Mechanism ME3224 (Spring 2018)
- Design of Machine Elements ME3227 (Fall 2021)
- Mechanical Vibrations ME3220 (Spring 2022)

Responsibilities

- Lecture recitation sessions twice a semester
- Hold office hours
- Design practice questions for midterm and final exams
- Grade homework, quizzes, and exams, and report common mistake to the instructor

Presentations in conferences

- Solid and Physical Modeling, 2020, Online
- IDETC/CIE 2022, St. Louis, Missouri
- IDETC/CIE 2023, Boston, MA
- Solid Freeform Fabrication Symposium 2023, Austin, TX
- IDETC/CIE 2024, DC, USA

MENTORING EXPERIENCE

Undergraduate Students

- Jiayi Jin (Summer 2023)
 - Project: Data-Driven Inpainting for Full-Part Temperature Monitoring in Additive Manufacturing
 - Current Position: Ph.D. student in Mechanical Engineering Department, University of Wisconsin-Madison
- Samuel Green (Summer 2023)
 - Project: Exploring the replicate-adapt-optimise spectrum in the design of a human-powered race vehicle
 - Current Position: B.S. student in Mechanical Engineering Department, Carnegie Mellon University

Ph.D. Students

- Zeda Xu (Spring 2024)
 - Project: AI Tutor Based on Adaptive Control of Thought
 - Current Position: Ph.D. student in Mechanical Engineering Department, Carnegie Mellon University
- Martha Baldwin (Fall 2023)
 - Project: Multi-lattice Topology Optimization
 - Current Position: Ph.D. student in Mechanical Engineering Department, Carnegie Mellon University
- Wenzhuo Xu (Spring 2023 Fall 2023)
 - Project: Adaptive Data Scoping for Physics-informed Neural Networks
 - Current Position: Ph.D. student in Mechanical Engineering Department, Carnegie Mellon University
- Mohammad M. Behzadi (Spring 2022 Fall 2022)
 - Project: Packing and Routing Optimization for Complex System Design
 - Current Position: Ph.D. student in Mechanical Engineering Department, University of Connecticut

RESEARCH EXPERIENCE

Postdoctoral Research

January 2023 - Present Carnegie Mellon University Supervised by Dr. Chris McComb and Dr. Sneha Prabha Narra Multi-lattice topology optimization for additive manufacturing

- Conducted simultaneous optimization of macro-scale topology and meso-scale structural lattice layout.
- Employed a Variational Autoencoder to encode the geometric characteristics of lattices into a low-dimensional vector space.
- Implemented the Fourier Neural Operator to enhance the connectivity between adjacent cells.

Fast thermal simulation for additive manufacturing

- Developed a dataset capturing temperature evolution across complex geometries
- Implemented a data-driven model utilizing the Fourier Neural Operator to accurately track local temperature changes during the Additive Manufacturing (AM) process.
- Demonstrated enhanced geometric generalizability compared to prior methods, achieving computation speeds three orders of magnitude faster than the traditional finite element method.

Full-field temperature monitoring during additive manufacturing

- Monitored temperature distribution throughout parts during the fabrication process using a hybrid framework
- Integrated boundary temperatures from in-situ sensors with a data-driven model based on Graph CNNs to derive comprehensive field temperature mapping across the part.
- Developed a methodology capable of constructing real-time temperature digital twins for AMfabricated parts, enhancing monitoring precision and operational efficiency.

Doctoral Research

University of Connecticut

August 2017 - January 2022 Supervised by Dr. Horea Ilies

Geometry interchangeability check among CAX systems

- Established a novel representation scheme, Maximal Disjoint Ball Decomposition (MDBD), facilitating the conversion from commonly used representations, including boundary representation and point clouds.
- Ensured uniqueness of MDBD for a given domain, invariant under rigid body transformations, reflections, and uniform scaling, while maintaining stability and robustness against minor boundary modifications.
- Applied MDBD as a proxy representation for solid modeling in CAX systems, proving effective for various tasks including shape similarity measurement, collision detection, packing optimization, and de-featuring.

CAD model structure features recognition

- Developed graph analysis tools that utilize MDBD for shape analysis tasks, ensuring consistent results across all valid geometric representations.
- Proposed a graph kernel based on random walks, leveraging the hierarchical structure of MDBD, which operates with linear time complexity.
- Implemented a graph clustering technique combining an Adversarially Regularized Variational Graph Autoencoder with KMeans to segment geometric models within an unsupervised learning framework.
- Established a sub-structure matching method that supports novel, robust, and representationagnostic feature recognition algorithms, surpassing traditional shape descriptors in versatility and power.

Quasi-conformal triangle mesh morphing

- Established a method utilizing sphere packings on Riemannian manifolds, capitalizing on sphere tangency to construct continuous quasi-conformal maps. This approach ensures maps remain close to conformal throughout the deformation without needing a predefined target surface.
- Demonstrated the practical application of this method in the conceptual design and control of a soft robotic gripper. The gripper employs linear actuators and spherical joints in a triangular arrangement, optimizing functionality through strategic deformations.

Optimization of 3D Spatial Packaging for Interconnected Systems (SPI2)

- Addressed the SPI2 challenge, a prevalent layout design issue in compactly-assembled engineering systems, through an innovative optimization framework using Maximal Disjoint Ball Decomposition (MDBD). This method enhances the arrangement of interconnected systems with components of arbitrary shapes.
- The framework pioneers the exploration of designs in higher-dimensional Euclidean spaces, facilitating the conceptualization of 3D system layouts within 4D spaces and beyond, thus broadening the possibilities for complex spatial configurations.

Automatic shape modification for additive manufacturing

- Developed a method to minimize the use of sacrificial material in near-net shape AM parts through targeted shape modifications.
- Formulated the problem as a shape optimization task that conservatively adjusts vertex coordinates to reduce original geometry changes, while preserving the manifold nature of the model and adhering to overhang angle constraints.
- This discrete approach provides distinct advantages over continuous function-based methods, offering enhanced flexibility to meet specific user requirements for different regions of a part.

Method of electrowetting for drop-on-demand additive manufacturing

- Demonstrated the application of the electrowetting method to precisely control droplet size in drop-on-demand AM techniques by altering the contact angle at the three-phase contact line.
- Engineered a novel droplet generation approach that exclusively utilizes electrowetting, eliminating the need for driving pressure waves.
- The design's simplicity positions it as an ideal candidate for the next generation of drop-on-demand AM systems, featuring a compact cluster of independently controlled printheads.

Other Research Experience

Development of Shape Modification Method for Additive Manufacturing

Research InternMay 2021 - September 2021Palo Alto Research CenterSupervised by Dr. Morad Behandish

- Initiated and developed a method that modifies the shape of parts to satisfy the constraints of Additive Manufacturing;
- Optimized the computation efficiency of the method so that it could deal with a realistic model on a normal laptop within a couple of minutes;
- Documented the work that leads to the draft of research paper and patent.

Microcrack connectivity in rocks: a real-space renormalization group approach for 3D anisotropic bond percolation

Research Assistant Chinese Academy of Sciences, Institute of Mechanics September 2014 - September 2015 Supervised by Dr. Zhao Ya-Pu

- Conducted a research on Microscale Mechanism of Fracture-Network Connectivity and Desorption Transportation of Shale Gas
- Explored the intricate behaviors impacting gas release and flow in shale formations, contributing to enhanced models of gas extraction efficiency.

SERVICE

Session Chair

• IDETC/CIE 2024, DC

Reviewer (Journals)

- Additive Manufacturing
- Journal of Mechanical Design
- Journal of Computing and Information Science in Engineering
- Journal of Computer-Aided Design
- Journal of Computer in Industry
- Nature Communication

Reviewer (Conferences)

- IDETC/CIE Conference 2024, DC
- IDETC/CIE Conference 2023, Boston, MA